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Boundary layers whose streamlines are closed 

By W. W. WOOD 

Aeronautical Research Laboratories, Fishermans Bend, Melbourne 

(Received 19 Septeiiiher 1956) 

SUMMARY 
Certain two-dimensional, laminar boundary layers are con- 

sidered whose streamlines are closed. The  speed at the solid 
boundary is supposed uniform, the boundary outline being 
stationary, and the speed in the boundary layer is supposed to 
differ only slightly from that of the boundary. A formal solution 
is then obtained for the motion in the boundary layer. The  analysis 
confirms that a closed boundary layer may exist and yields a 
condition needed to determine the inviscid motion. The  condition 
is extracted in a simplified but approximate form and two examples 
of its use are given. A further class of closed boundary layers, 
namely those for which the pressure is uniform, is also considered. 
For this+class the condition needed to determine the inviscid motion 
may be derived in a form both simple and exact. 

1. INTRODUCTION 
In  the steady motion of a slightly viscous incompressible fluid the 

direct effect of local viscous forces may generally be neglected except in 
the neighbourhood of certain singular surfaces. The  indirect effect of the 
viscous forces that act in these layers is, however, often appreciable through- 
out the whole region of motion. In  such cases, the motion of the fluid in the 
‘inviscid’ region cannot be determined independently of the fluid in the 
viscous shear layers. 

In  two-dimensional motions, indeterminacies which arise from the 
complete neglect of viscous action are usually of one of two kinds. Either 
a shear layer is shed from a bounding surface and the inviscid motion is 
indeterminate because the position of this shear layer is not known. Or 
a shear layer, whose position is known or can be regarded.as known, is 
closed and the inviscid motion is indeterminate to the extent of certain 
constants. It is with this second kind of indeterminacy that we shall be 
concerned. 

For irrotational motions, such indeterminacies generally take the farm 
that the circulation round each closed boundary is unknown. For instance, 
if fluid of infinite extent streams past a circular cylinder supposedly 
rotating so rapidly that the boundary layer does not separate, then the 
inviscid motion is undertermined to  the extent of its circulation about the 
cylinder. 
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For rotational motions, the vorticity may also be undetermined. As 
a typical example may be cited the motion between two rotating circular 
cylinders whose axes are set apart. Here the direct action of viscosity may 
be supposed confined to boundary layers at the cylinders. Since the 
streamlines of the inviscid motion are closed, the vorticity of the inviscid 
motion is uniform (Batchelor 1956a). T h c  value of this vorticity and the 
value of the (inviscid) circulation round some given circuit enclosing the 
inner cylinder are then undetermined. Flow patterns similar to this have 
recently been suggested as representing the motion in closed regions divided 
from a main flow by a separated boundary layer (Squire 1956, Batchelor 
1956 b). 

T o  resolve the indeterminacies in steady motions of this kind, it is 
necessary to examine shear layers whose streamlines are closed. Only one 
solution (Squire 1956) for the velocity distribution in a closed shear layer 
has so far been reported. In  this case the motion in the shear layer was 
calculated using a Rayleigh-type approximation, the convective velocity 
in the momentum equation being replaced by the tangential velocity at 
its outer edge. 

In  the following a class of two-dimensional boundary layers is considered 
for which the motion in the boundary layer can, in principle, be solved 
exactly. The  closed solid boundary is supposed to move tangentially 
with uniform speed, and the speed in the boundary layer is assumed to differ 
only slightly from that of the boundary. A4 formal solution may then be 
derived by expanding the velocity in a power series in a small parameter 
representative of the small differences of speed through the boundary layer. 
As may be expected, the analysis of the closed boundary layer enables the 
associated indeterminacy of the inviscid motion to be resolved, in principle, 
exactly. 

Those closed boundary layers in which the pressure is uniform, the 
boundary speed being non-uniform, are also considered. For these boundary 
layers the information needed to determine the inviscid motion can be 
extracted without solving in detail for the motion in the boundary layer. 

2. SERIES SOLUTION 1 

We start by deriving a series solution for closed boundary layers of the 
first class in which the speed is almost uniform. 

The  motion in the boundary layer is assumed steady and two-dimensional, 
the fluid being incompressible and of kinematic viscosity v. Each streamline 
is assumed to circumscribe the closed boundary and, to the boundary layer 
approximation, to have the common length 2nL. The  velocity at the 
boundary is supposed tangential and of uniform magnitude uo. For 
definiteness, the closed boundary may be visualized as an inextensi ble band 
which lines a fixed cylinder and moves transversely to its generators. Let 
xL be arc-distance along the boundary from some fixed reference point. 
Further let 2/(vuo L)# and uou(x, #) be the stream function and tangential 
component of velocity in the boundary layer. With x, + as coordinates, the 
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equations that govern the motion in the boundary layer may then be written 

('1 
au2 du2 a w  
ax dx a p  ' + U -  - 

the boundary conditions at the moving boundary # = 0 (say) and at the 
outer edge of the boundary layer being, respectively, 

u(x,  0) =- 1, lini u(,r, {J) 7- U(x) .  (2) 
$ 1 ' 3  u, 

Since the velocity on each closed streamline returns cyclicly to its initial 
value, we have the additional condition that, for each closed streamline, 

u(0, +) = u(2.rr, $1. (3) 
The assumptions that underlie the series expansions of the velocity 

in the boundary layer are best introduced by referring to the whole motion 
of which the boundary layer is part. A parameter y is presumed to be 
formed from the lengths and velocities that enter into the data for the 
complete motion. For a certain value of y ( y  = 0, say), the motion is 
supposed such that there is no shear layer at the boundary considered, the 
velocity of the inviscid motion exactly matching that of the boundary. 
The motion is then considered for the small, non-zero values of y for which 
the velocity of the inviscid motion at the boundary is slightly different from 
that of the boundary. For these values of y it is supposed that U2 may be 
represented in the form 

m 

U y x )  = 1 + 2 &(x)y".  (4) 
R=l  

A similar expansion for u2 may then be expected to hold in the boundary 
layer. Accordingly we write 

Since the boundary layer equation involves u linearly we also write 

where the functions P,, are polynomials in ql, q2, ..., q,. 
of the boundary layer equation is then 

The  viscous term 

where 

The remainder terms R, depend only on the lower order coefficients 
ql, q2, ..., q,L-l of the expansion for u2 and may readily be calculated from (6) 
and (8). In  particular, 
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The boundary layer equation (1) and boundary conditions (2) may now 
be replaced by a set of equations and boundary conditions for the coefficients 
qn. Thus we have 

with the boundary conditions, for all n, 

Since the velocity gradient uau/a$ must vanish at the outer edge of the 
boundary layer, we also have that 

a4n 
to+ co a* 
lim - (x, #) = 0. 

At first sight, it appears that these equations enable all the coefficients qn 
to be calculated in turn, thereby determining the motion in the boundary 
layer. In  fact, however, unless the distribution of the external velocity 
round the boundary layer is suitably restricted, none of these equations 
possesses a solution which satisfies its boundary conditions. For, on 
integrating (10) round a closed streamline, we find that 

q1 dx = 0, 

-2n 

0 
q,, dx = - 1 R,, dx (n > l), 

whence, on integrating twice with respect to $ and using the boundary 
conditions (11) for Q,~ ,  

2n 

0 
&dx = 0, ( 12) 

(13) 
- 0 0  ,.2n jzz Q, dx = a 0  J y J o  1 RJx, +’) dxd#’d$ (n  > 1). 

0 

From equation (12) we see immediately that the average value of the leading 
term Q1 of the expansion for U 2  must be zero. As regards equation (13), 
each function R,, is defined in terms of the lower order coefficients ql, q2, ..., 
qn-l and hence is ultimately determined, on solving (10) successively for 
ql, q2 ,..., qn-l, by the lower order coefficients Q1, Q2 ,..., Qn-l. Equation (13) 
therefore implies a relation between each of the coefficients Qn ( n  > 1) of 
the expansion for U2 and the earlier coefficients Q1, Qz, ..., Qn-l. Unless the 
distribution of the external velocity round the outer edge of the boundary 
layer is such that the conditions represented by equations (12) and (13) are 
satisfied, the boundary layer motion with closed streamlines is not possible. 
The implication of these conditions for the inviscid flow will be discussed 
later. For the moment, it is assumed that the inviscid flow is such that 
they are satisfied. 
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In order to solve the equations for the coeficients qn. of the expansion 
for u2, the functions that occur in these equations are expressed in Fourier 
series. Thus, we write 

W 

qn(x, $1 = t: qnnz(+)eilrLTt 
m = - a  

~ n ( x ,  *) = 2. Rnrn(*)eim", J 
m=- W 

where, from the conditions (12) and (13) just derived, 

Qlo = 0, 

The equations and boundary conditions for the coefficients qn then reduce 
to the eauations 

with the boundary conditions for all n, 

qnm(0) = 0, lim qnm(#) = Qnm. (16) 
Y-f w 

These equations define qvlWL in terms of Q,,,, and R,,,. On solving them and 
substituting in (14) we get 

where 

As may be recalled, (Inm can be calculated directly from the external speed 
U(x) (see (4) and (14)). can be calculated in terms of the 
coefficientsq,, q2, ..., qn-,oflowerorderinn(see(8)and(l4)). Equations(17), 
therefore, may be used to calculate in turn the successive coefficients qn of 
the expansion for u2. 

F.M. F 

Also 
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When the coefficients ql( have been calculated in this way, the velocity 
component u may be determined. Also, the conditions (13) may be expressed 
directly in terms of the coefficients Q,,,H. These conditions are now seen 
to  be sufficient as well as necessary to allow qn to be calculated. Subject 
to all the series used being convergent, the above calculation thus leads to a 
formal solution for the motion in the boundary layer and enables the necessary 
and sufficient conditions for the existence of the solution to br formulated 
in terms of the external velocity. 

It remains to see how these results fit in with the expected behaviour of 
the inviscid motion. When an inviscid motion is bounded by surfaces 
whose position is known, there is in general one disposable constant of the 
inviscid motion for each closed surface. The  conditions on QnnL are clearly 
equivalent to  a condition for such a disposable constant. Thus on the one 
hand the inviscid motion can generally be chosen so that the boundary layer 
motion of the type considered is possible. On the other hand, the existence 
of the closed boundary layer being assumed, the conditions on Q,,,,, provide 
just that extra information needed to determine the inviscid motion. 

A formal solution having been obtained for a class of boundary layers 
whose streamlines are closed, it is of some interest to see whether the solution 
shows any features additional to those normally observed for boundary 
layers whose streamlines are open. Two such features seem worth mention- 
ing. T h e  first is the property that the speed at the outer edge of the boundary 
layer is related to the speed of the boundary. In  assuming that the fluid 
just outside the boundary layer moves continuously round the boundary, 
it was already implicit that the circulatory movement of the boundary could 
impart circulation to the inviscid motion. Some such relation was, therefore, 
to be expected. The  second feature concerns the velocity profile. Instead 
of tending monotonically to its limiting value in the mainstream, the 
magnitude of the velocity may oscillate infinitely often about this value. 
T h e  underlying reason for this oscillatory behaviour is clear. If the velocity 
gradient u aujall, tended to zero monotonically, then on streamlines 
sufficiently far from the wall viscous action would always tend to accentuate 
the difference between the speed in the boundary layer and the speed just 
outside it. As a consequence, the speed on such streamlines would not 
return cyclicly to its initial value. Mathematically the oscillatory behaviour 
results from the periodic dependence of u on arc-distance, and bears an 
analogy to the oscillatory variation of amplitude with depth in the well- 
known ' skin effect ' for a rapidly alternating electric current. 

It may be noted in passing that the perturbation method used above 
extends to closed boundary layers in which the fluid is compressible. In  
this case the working assumption is that the motion in the boundary layer 
region differs only slightly from a motion with uniform speed and uniform 
temperature. I n  order for the closed motion to be possible, certain 
conditions must now be satisfied by the density and temperature just outside 
the boundary layer as well as by the speed there ; the energy equation now 
giving rise to a set of conditions analogous to those obtained above from the 
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momentum equation. Both the speed and the temperature may now 
oscillate about their values in the mainstream as the outer edge of the 
boundary layer is approached. 

3.  THE CONDITION ON THE EXTERNAL VELOCITY DISTRIBIJTION 

As has been remarked, the condition on the external velocity distribution 
imposed by the closure of the boundary layer provides information needed 
to determine the inviscid motion. 'I'here seems little prospect of deriving 
the exact condition in a simple form. Relatively simple approximate forms 
can, however, be derived, and this we proceed to  do. 

The condition on the leading term of the expansion for the external 
velocity is given by (12). Correct to order y this condition is equivalent to 

i"" U d x  = 27. (18) 
" 0  

The circulation round the boundary of the inviscid motion is thus specified 
directly. If the inviscid motion is confined by a single closed boundary 
at which this condition holds then the vorticity of the inviscid motion may 
also be specified directly. For, the streamlines being closed, the vorticity 
w is uniform (Batchelor 1956 a). Whence by Stokes's theorem, 

where A is the area occupied by the fluid. A similar result holds if the 
inviscid motion is confined by two closed boundaries and y is a suitable 
expansion parameter for each simultaneously. 

The conditions on the higher order terms of the expansion for the 
external velocity are defined by (13 )  together with the solution, now known, 
for the motion in the boundary layer. On substituting for R, and R, and 
using the governing equations for q1 and q2, it may he shown that 

Then, when q1 is replaced by the explicit expression obtained for it, this 
relation becomes 

where the overbar denotes a complex conjugate. T h e  condition that the 
boundary layer should close is thus expressed correct to  order y3 as an 
explicit condition on the external speed. 

Note that to  order y2, 

jZZ(U- l )dx  = - - it"(.- 1)2dx  < 0. 
0 

The circulation imparted to the inviscid flow is thus less than the circulation 

I 2  
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of the motion at the boundary. 
the same as  that at the boundary, as may be seen directly from (18). 

is only one component in the Fourier series for Ql(x). 
then reduces to 

T o  order y the circulation imparted is 

I n  several closed boundary layers to which these results apply, there 
Condition (21) 

(T7"JT)d.X = O(y4). 1% 
4. EXAMPLES 

To illustrate the way in which the additional boundary conditions 
just obtained may be used to determine the inviscid motion, two examples 
are considered. 

T h e  first concerns the motion of fluid enclosed within a fixed, nearly 
circular elliptic cylinder which is lined by a moving band. The  band 
moves transversely to the generators and is assumed to maintain the fluid 
in a steady rotary motion in which the action of viscous forces is negligible 
save in a closed boundary layer on the band. 

If the elliptic boundary were exactly circular, the fluid would rotate 
as a rigid body and at the boundary we would have u = U = 1. In  the 
case of a nearly circular elliptic boundary, therefore, the velocity in the 
boundary layer may reasonably be expanded in powers of the small 
eccentricity e in the same way as in the general case the velocity was expanded 
in powers of y. 

Since the streamlines of the inviscid motion are closed, the vorticity 
of the inviscid motion is uniform (Batchelor 1956a). For a given value w 

of this vorticity, the inviscid motion is determined by the condition of zero 
mass flux normal to the cylinder. It is supposed that the cylinder section 
has semi-axes a, b and is defined in Cartesian coordinates 5 , ~  by the equation 

E2 
+ f - 

b2 = 1. a2 

T h e  stream function of the inviscid motion may then be written 

whence the speed of the inviscid motion at the boundary is 

T o  determine the magnitude of the vorticity we use the further boundary 
condition imposed by the requirement that the boundary layer should 
close. As a preliminary we note that to order z, 

U2 = 1 + (Ql0 + 1 cos 2x)e. 

Moreover, from the condition (12) on the leading term Q1(x), Ql0 must 
be zero. The  Fourier expansion of Q1(x) in this example thus contains 
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only one term. The  appropriate condition for the velocity at the outer 
edge of the boundary layer is, therefore, that given by (22). On sub- 
stituting for U from (24) and integrating round the boundary, it follows 
immediately that correct to order e3, 

(a2 + b2)3 
a b {2(a2 +- b2)2 + (a2- b2)2) w2 = 4 4  

Whencc, aftcr some rcduction 

This relation determines the vorticity and thence the stream function, of 
the inviscid motion correct to order e3. To this order, the vorticity is 
apparently inversely proportional to the square root of the area occupied 
by the fluid. 

Our second example concerns the steady streaming of unbounded fluid 
past a rotating cylinder. A series of photographs which illustrate this 
motion for various values of the peripheral speed uo relative to the mainstream 
speed U,  has been published by Prandtl & Tietjens (1936, plate 7). When 
uo/Uw is small the boundary layer at the cylinder separates and a wake 
forms. As uo/Uw increases, the size of the wake diminishes and ultimately, 
for uo/Uw greater than 4, the boundary layer appears to be wholly attached 
to the cylinder. We assume, then, that for sufficiently large values of uo/U, 
the boundary layer remains attached to the cylinder. 

T h e  inviscid motion is then known apart from the value of its circulation 
1' about the cylinder. ,4t the cylinder, the speed of the inviscid motion is 
given by 

(26) 
1' 

2 ~ a  
uoU = - +2Umsinx, 

where a denotes the cylinder radius and x the inclination of the outward 
normal to the cylinder to the velocity of the mainstream. 

If the fluid were at rest at infinite distance from the cylinder ( U ,  = 0), 
there would be no boundary layer at the cylinder and I' would be equal 
to 2ra. For values of U ,  small compared to u,,, we may therefore expect 
that U2 can be expanded in powers of U,/uo in the same way as it was 
formerly expanded in powers of y. 

To determine r' we again use the additional boundary condition imposed 
by the closure of the boundary layer at the cylinder. As in the previous 
example, the appropriate condition is that given by (22). 
for U from (26) we get 

I ' = 2 m u ,  i 
The lift coefficient for the cylinder, C, = L/paU2,, L 
force and p the fluid density, is therefore given by 

On substituting 

(27) 

being the lifting 
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5 .  THE CLOSED BOUNDARY LAYER WITH CONSTANT PRESSURE 

So far the speed of motion round the outer edge of the boundary layer 
has been supposed to be non-uniform, the speed of motion at the boundary 
being uniform. It is now supposed that the speed uo U of motion round 
the outer edge of the closed boundary layer is uniform, the speed uof(x)  
of motion at the boundary being non-uniform. Boundary layers of this 
kind are of interest because of the simplicity of the condition they impose 
on the external flow. 

Since the pressure gradient of the external flow vanishes, the equation 
of motion in the boundary layer may be written 

au azuz 

ax a+2 * 

2 -  ==-  

On integrating round a closed streamline we get that 
a 2  -2n 
- J 212 ~x = 0. a+2 n 

Whence, on further integration, 

This is the condition that must be satisfied by the external speed if the 
boundary layer is closed and the pressure gradient is zero. Stated simply, 
the condition is that the speed of the external flow must be equal to the 
root-mean-square speed of the closed bounding surface. 

It is rather interesting that this result is unimpaired if the boundary 
layer equation is replaced by the approximate equation 

Inasmuch as I/  is a (root-mean-square) average round each streamline of 
the quantity u which it replaces, this equation may well yield a solution 
more accurate than would normally be expected from a linearized form of 
the boundary layer equations. 

As an example in which condition (31 )  may be used, we may mention 
the steady two-dimensional motion of fluid inside an infinite circular 
cylinder which is rotating about its axis, a fixed sheath shielding a segment 
of the boundary. The  inviscid motion is then a rigid-body rotation. Thus 
the boundary layer on the sheath and exposed cylinder surface is closed 
and subject to zero pressure gradient. Hence from (31)  the angular velocity 
of the rigid-body rotation 52 is related to the angular velocity of the cylinder 
Ql by 

where u is the angle subtended at the axis by the unshielded segment of the 
cylinder surface. 

The  author first obtained the result (31) after seeing an early draft of a 
paper on closed flows by Dr  Batchelor, and it has been reported in the 
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published version of that paper (Batchelor 1956a). This relation and a 
weaker form of (21) have been independently obtained by Feynman & 
Lagerstrom, who reported their conclusions in a paper presented at the 
9th International Congress for Applied Mechanics, Brussels, in September, 
1956. 

This example is also the one mentioned in the Introduction as having 
been considered by Squire. Squire used a Rayleigh-type approximation 
in which the boundary layer equation was, in effect, replaced by 

au a2u 
u ,u -  = v -  

ax a y '  
y being distance normal to the boundary. 
relation 

This equation yields the linear 

U 
Q = - Q", 2T (34) 

which is, of course, correct when u = 0 or 27r but elsewhere gives a value 
for Q which is too small. The  greatest error in Q occurs when u = &r, 

the result then being too small by a factor 4. 

The author is very grateful to Dr  I. Proudman for his encouragement 
and advice and to Dr  G. K. Batchelor whose interest in motions with closed 
streamlines gave the initial stimulus to this work. 
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